Recent Advances and Trends in Global Optimization: Deterministic and Stochastic Methods
نویسندگان
چکیده
Global optimization has been expanding in all directions at an astonishing rate during the last few decades. Many new theoretical, algorithmic, and computational contributions of global optimization have been used to solve a wide spectrum of difficult problems in science and engineering. In particular, global optimization has recently emerged as a successful and versatile tool in many aspects of product and process design problems. The first part of the paper covers material regarding deterministic global optimization. We are going to focus on new algorithmic developments and some applications. In the second part of the paper we will outline some of the most basic stochastic techniques for global optimization and will present some elementary yet powerful approaches which might prove very useful for applications in the fields of process design, of innovative material research and of problems of biological interest; these problems share an enormous complexity which in most cases can be attacked only through heuristic methods.
منابع مشابه
A robust multi-objective global supplier selection model under currency fluctuation and price discount
Robust supplier selection problem, in a scenario-based approach has been proposed, when the demand and exchange rates are subject to uncertainties. First, a deterministic multi-objective mixed integer linear programming is developed; then, the robust counterpart of the proposed mixed integer linear programming is presented using the recent extension in robust optimization theory. We discuss dec...
متن کاملUsing a new modified harmony search algorithm to solve multi-objective reactive power dispatch in deterministic and stochastic models
The optimal reactive power dispatch (ORPD) is a very important problem aspect of power system planning and is a highly nonlinear, non-convex optimization problem because consist of both continuous and discrete control variables. Since the power system has inherent uncertainty, hereby, this paper presents both of the deterministic and stochastic models for ORPD problem in multi objective and sin...
متن کاملEffects of Probability Function on the Performance of Stochastic Programming
Stochastic programming is a valuable optimization tool where used when some or all of the design parameters of an optimization problem are defined by stochastic variables rather than by deterministic quantities. Depending on the nature of equations involved in the problem, a stochastic optimization problem is called a stochastic linear or nonlinear programming problem. In this paper,a stochasti...
متن کاملDecision making in forest management with consideration of stochastic prices
The optimal harvesting policy is calculated as a function of the entering stock, the price state, the harvesting cost, and the rate of interest in the capital market. In order to determine the optimal harvest schedule, the growth function and stumpage price process are estimated for the Swedish mixed species forests. The stumpage price is assumed to follow a stochastic Markov process. A stoch...
متن کاملOperating Room Scheduling in Teaching Hospitals: A Novel Stochastic Optimization Model
Background and Objectives: Operating room (OR) scheduling is key to optimal operating room productivity. The significant uncertainty associated with surgery duration renders scheduling of surgical operation a challenging task. This paper proposes a novel computational stochastic model to optimize scheduling of surgeries with uncertain durations. The model considers various surgical operation co...
متن کامل